Characteristics and Mechanisms of Cardiopulmonary Injury Caused by Mine Blasts in Shoals: A Randomized Controlled Study in a Rabbit Model
نویسندگان
چکیده
BACKGROUND Because the characteristics of blast waves in water are different from those in air and because kinetic energy is liberated by a pressure wave at the water-air interface, thoracic injuries from mine blasts in shoals may be serious. The aim of the present study was to investigate the characteristics and mechanisms of cardiopulmonary injury caused by mine blasts in shoals. METHODS To study the characteristics of cardiopulmonary injury, 56 animals were divided randomly into three experimental groups (12 animals in the sham group, 22 animals in the land group and 22 animals in the shoal group). To examine the biomechanics of injury, 20 animals were divided randomly into the land group and the shoal group. In the experimental model, the water surface was at the level of the rabbit's xiphoid process, and paper electric detonators (600 mg RDX) were used to simulate mines. Electrocardiography and echocardiography were conducted, and arterial blood gases, serum levels of cardiac troponin I and creatine kinase-MB and other physiologic parameters were measured over a 12-hour period after detonation. Pressures in the thorax and abdomen and the acceleration of the thorax were measured. CONCLUSION The results indicate that severe cardiopulmonary injury and dysfunction occur following exposure to mine blasts in shoals. Therefore, the mechanisms of cardiopulmonary injury may result from shear waves that produce strain at the water-air interface. Another mechanism of injury includes the propagation of the shock wave from the planta to the thorax, which causes a much higher peak overpressure in the abdomen than in the thorax; as a result, the abdominal organs and diaphragm are thrust into the thorax, damaging the lungs and heart.
منابع مشابه
Numerical modeling of primary thoracic trauma because of blast
Purpose: Since explosive blasts continue to cause casualties in both civil and military environments, there is a need for an understanding of the mechanisms of blast trauma at the human organ level, plus a more detailed predictive methodology. The primary goal of this research was to develop a finite element model capable of predicting primary blast injury to the lung so as to assist in the d...
متن کاملEffects of mild hypothermia therapy on the levels of glutathione in rabbit blood and cerebrospinal fluid after cardiopulmonary resuscitation
Objective(s): The aim of this study wasto investigate the effects of mild hypothermia therapy on oxidative stress injury of rabbit brain tissue after cardiopulmonary resuscitation (CPR). Materials and Methods: Rabbit models of cardiac arrest were established. After the restoration of spontaneous circulation, 50 rabbits were randomly divided into normothermia and hypothermia groups. The followi...
متن کاملA comparison of laboratory findings in coronary artery bypass surgery with and without cardiopulmonary bypass
Background : Quests for doing coronary artery bypass surgery by a technique with lower complications is going on, for this aim many studies compared patients undergoing CABG with or without cardiopulmonary bypass. This study was carried out to compare laboratory findings after coronary artery bypass in these two groups of patients. Materials and Methods: In a retrospective study, 167 patients ...
متن کاملA quantitative model for evaluation and classification of blastings in open-pit mines
By evaluation of the blasting results, a proper blast pattern can be presented. It is, therefore, essential to employ a reliable method to evaluate blastings for the effective control and optimization of the main cycle operations. This paper aims to propose a criterion for evaluating the blasting results such as the fragmentation, muckpile condition, back-break, and fly rock, and to make a poss...
متن کاملInvestigation of the rock blast fragmentation based on the specific explosive energy and in-situ block size
The assessment of fragmentation through blasting and therefore subsequent crushing and grinding stages is important in order to control and optimize the mining operation. Prediction of the mean size of fragmented rock by the rock mass characteristics, the blasting geometry, the technical parameters and the explosive properties is an important challenge for the blasting engineers. Some of the ef...
متن کامل